
A

A
a

b

c

a

A
R
R
A
A

P
4

K
D
T
B
C

1

h
t
d
T
e
t
[
t
s
f⎧⎪⎪⎨
⎪⎪⎩

a
u

T

(

0
d

Journal of Hazardous Materials 181 (2010) 609–616

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journa l homepage: www.e lsev ier .com/ locate / jhazmat

numerical study of the evolution of the blast wave shape in tunnels

del M. Benselamaa,b,∗, Mame J.-P. William-Louisa,b, François Monnoyera,b, Christophe Proustc

Univ Lille Nord de France, F-59000 Lille, France
UVHC, LME, F-59313 Valenciennes, France
Institut National de l’Environnement Industriel et des Risques, F-60550 Verneuil-en-Halatte, France

r t i c l e i n f o

rticle history:
eceived 25 March 2010
eceived in revised form 12 May 2010
ccepted 12 May 2010
vailable online 25 May 2010

ACS:

a b s t r a c t

When the explosion of condensed materials occurs in a tunnel, the subsequent blast wave reveals two
patterns. The region close to the explosive charge exhibits a free-field overpressure decay pattern and
the region far from the explosion, which undergoes much less overpressure decay, exhibits a quasi-one-
dimensional pattern. Well-known overpressure decay laws that are applicable in each region already
exist. In order to assess the validity range of each of these laws, the blast wave due an explosion inside
a typical confined geometry is examined in order to determine the position of the transition zone from
7.40.Rs

eywords:
amage assessment for explosions
hree-dimensional simulation
last wave

the free pattern to the one-dimensional pattern. To this end, the detonation of different quantities of
explosive charges was simulated inside a tunnel with a constant cross-sectional area, and the wave
aspect was determined for each region. This paper proposes a correlation law that defines the transition
distance according to the explosive charge’s weight and material and the geometry of the propagating
domain. The validity of the proposed correlation law is corroborated by experimental results. In the
authors’ opinion, this law may be helpful for rapidly and efficiently drawing up the blast wave damage
onfined domain map.

. Introduction

In order to assess the potential for damage and risk for both
uman and environmental factors, there are two propagation pat-
erns that allow the overpressure experienced to be linked to the
istance from the explosive charge in a straightforward manner.
he first propagation pattern is the free-field case, which consid-
rs that the blast wave propagates freely in the atmosphere. Using
he Sachs scaling law, Baker [1], Mills [2], Brode [3] and Henrych
4] have proposed general and equivalent fitting laws that relate
he maximum overpressure peak to the distance from the explo-
ive charge. In fact, Henrych [4] proposed one of the most common
ree-field decay law, which is expressed as follows:

�Pmax

Pref
|Henrych = 14.072

Z
+ 5.54

Z2
− 0.357

Z3
+ 0.00625

Z4
if 0.05 ≤ Z ≤ 0.3

�Pmax

Pref
|Henrych = 6.194

Z
− 0.326

Z2
+ 2.132

Z3
if 0.3 ≤ Z ≤ 1

�Pmax

P
|Henrych = 0.662

Z
+ 4.05

2
+ 3.288

3
if 1 ≤ Z.

(1)
ref Z Z

In partially congested domains, the free-field propagation
ssumption leads to underestimating the overpressure and thus
nderestimating possible human casualties and structural damage.
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The second propagation pattern is the case of a confined explo-
sion, which considers that the blast wave propagates inside a
confined space that is strong enough to withstand the explosive
charge impulse (e.g. a tunnel). The shock wave attenuates, first, due
to the rarefaction wave that degrades the front and, second, due to
the interaction between the moving gas and the confining tunnel
walls. Away from the explosive source, the maximum overpressure
peak decreases mainly because of wall friction. Tunnel wall fric-
tion attenuates the blast wave to varying degrees, depending on
the blast wavelength and velocity, time duration and the tunnel’s
cross-sectional area, roughness, gas density and viscosity.

Unlike free and surface blast propagation, very few experi-
ments investigating air detonation in underground environments
have been reported, mainly due to their military relevance. Taylor
[5] presents a general overview of blast wave behavior in con-
fined spaces. In Taylor’s overview, the structural design of fuel and
explosive storage in tunnels, chambers and tunnel junctions were
specifically emphasized. Based on the results from experiments
involving detonations at the closed-end of a tunnel, Curran [6] pro-
posed the following pressure–distance law for various explosives
weights:

( )

�p

p0
= M

˚2x

0.8
. (2)

In Curran’s results, the peak overpressures ranged from 3.5 to
70 bar.
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Nomenclature

Greek letters
˛ ratio of the explosive diameter to the tunnel’s

hydraulic diameter ˛ = 100 × d/dH

�x mesh cell size (m)
� length of the tunnel (m)
� mesh wavenumber, � = m1/3

c /�x (kg1/3/m)
ω constant for Jones–Wilkins–Lee (JWL) equation of

state
˚ tunnel cross-section diameter (m)
� density (kg/m3)

Latin letters
A tunnel cross-sectional area (m2)
A, B, C, R1, R2 constants for the JWL equation of state
d explosive charge diameter (m)
dH hydraulic diameter of the tunnel (m)
E total specific internal energy, E = e + (1/2)(u2 +

v2 + w2) (J/kg)
e specific internal energy (J/kg)
M Mach number
m weight (kg)
p pressure (Pa)
r radial coordinate (m)
T total simulation time (s)
t time (s)
x distance from the blast source (m)
Z reduced distance, Z = x/m1/3

c (m/kg1/3)

Indices
0 reference conditions
c explosive charge

t
a
d
s

[
c
t
r
d

w
r
t
c

b
1
s
o

away from the wall [10,11].
H hydraulic
Trans transition

Smith et al. [7] investigated the applicability of Sachs’ scaling law
o explosions in confined spaces for overpressures up to 0.4 bar. For
n explosion inside a tunnel that is closed at one end, these authors
etermined the following overpressure–distance decay relation-
hip:

�p

p0
= 7.028

(
M

Ax

)0.514
. (3)

Applying the energy concentration concept, Silvestrini et al.
8] proposed to extend the well-known free-field decay laws to
onfined spaces by modifying the evaluation distance. Instead of
he regular reduced distance Z , these authors used the corrected
educed distance Z ′ in the free-field law (1). This corrected reduced
istance Z ′ can be expressed as:

Z ′

Z
= 1(

VHSph/VTun

)1/3
, (4)

here VHSph/VTun is the ratio of the hemisphere volume (with a
adius equal to current distance x) to the volume of the tunnel por-
ion extending to a distance equal to x. This ratio defines the energy
oncentration factor [8].

Fig. 1 shows the overpressure decay laws for the free and driven

last waves due to the detonation of 1 kg of TNT inside a tunnel with
m2 cross-sectional area. The free decay law describes the explo-

ion onset while the driven decay law describes the established
ne-dimensional blast wave inside the tunnel.
Fig. 1. The free-field and one-dimensional decay law. TNT explosive weight mc =
1 kg and tunnel cross-sectional area A = 1 m2.

Since the incident waves are spherical in source-explosions, the
consequent reflections off the tunnel walls are generally due to
oblique incident waves. Many theoretical and experimental studies
of oblique shock waves have already been done. For instance, Baker
et al. [1] and Kinney [9] have finely described the process of reflec-
tion. Fig. 2 shows an incident angle �. As � gets larger, the reflected
wave can no longer maintain the flow near the wall parallel to the
wall. As a result, the incident (Fig. 2(a)) and reflected (Fig. 2(b))
waves coalesce and form a third shock wave that is detached from
the wall, called the Mach shock wave reflection (Fig. 2(c)). Stronger,
the Mach shock wave reflection travels faster than the incident
wave. The distance between the wall and the triple point, at which
the incident, reflected and Mach waves join, grows as the shock
system moves along the wall. In the case of spherical shock waves,
whose strength is diminishing, the locus of the triple point curves
Fig. 2. Illustration of the wall reflections according to the blast wave incident angle
�: (a) incident wave, (b) regular reflection, and (c) Mach reflection.
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Table 1
Parameters used for the JWL law describing the TNT explosive material.

1 Pa) B (×109 Pa) R1 R2 ω

3.74 4.15 0.90 0.35

r

˛

s
M
a
t
b
b
t

t
q
s
d
a
t
t
t
t
t

2

T
w
o
i

p

w
m

t
l
o
o
s
g
c
m
w

˛

F

Table 2
Explosive charges used in the present parametric study.

Weight (kg) Diameter d (×10−2 m) Ratio size ˛ � (m/kg1/3)

0.150 5.687 1.14 78.0
0.300 7.16 1.43 98.7

Fig. 4 represents the blast wave arrival time versus the gauge
position. The arrival time corresponds to the time elapsed between
the detonation of the explosive and the wave passing by the series
of gauges. Clearly, the larger the explosive charge, the smaller the
arrival time. In addition, the distance variations for the farther
Specific energy, ec (kJ/kg) Density, �c (kg/m3) A (×101

4870 1580 3.73

Kinney [9] calculated the incident angle ˛M at which the Mach
eflection happens:

M = 35
36

1
M − 1

+ 13
60

for (M > 1) . (5)

When the angle � is less than ˛M , no Mach reflection is pos-
ible, thus the reflection is regular, as shown in Fig. 2. When the
ach reflections from each side of the tunnel coalesce at point A,

s illustrated in Fig. 2(c), the whole tunnel cross-section is subjected
o the same pressure signature. Thus, the position of point A may
e considered as the transition zone from the freely-propagating
last wave to the one-dimensional blast wave propagating inside
unnels.

The objective of this paper is to determine the position of this
ransition zone. To accomplish this, the detonation of different
uantities of TNT explosives inside a perfectly rigid tunnel was
imulated. A scaling law that eliminates the solution’s parametric
ependence on the explosive energy, the weight of the explosives
nd the real tunnel cross-sectional size is provided. This scaling law
ransforms the infinite number of solutions into a single solution
hat demonstrates a monotonic transition from one wave pattern
o the other. A fitting power law is proposed; in order to examine
his law’s validity, experimental data is compared to the results of
he present simulation.

. The configuration

In the present simulated configurations, different weights of a
NT explosive charge were located on the symmetry axis of a tunnel
ith a fixed square cross-sectional area. The TNT gases, composed

f hot detonation products, obey the Jones–Wilkins–Lee law, which
s expressed as [12]:

= A
(

1 − ω

R1

�

�c

)
exp

(−R1�c

�

)
+ B

(
1 − ω

R2

�

�c

)

× exp
(−R2�c

�

)
+ ω�e, (6)

here the parameters A, B, R1, R2, ω and �c depend on the explosive
aterial. Table 1 provides these parameters.
Because of the symmetry of the configuration, only one half of

he blast charge propagating domain is considered here. The tunnel
ength is � = 30 m and its hydraulic diameter is dH = 5 m. A series
f gauges is located along the tunnel’s symmetry axis and another
ne is located 2 m off-set from this axis. The successive gauges are
eparated by 1 m each, as illustrated in Fig. 3. In each series, the
auges are numbered from 1, the gauge nearest to the explosive
harge, to 30, the gauge farthest from the explosive charge. As sum-

arized in Table 2, six explosive charges were used. Each explosive
eight corresponds to a parameter ˛, given by:

= 100
d

dH
. (7)

ig. 3. Illustration of the configuration used to perform the parametric study.
1.000 10.7 2.14 142.2
5.000 18.3 3.66 242.8

10.000 23.05 4.61 306.3
15.000 26.39 5.28 350.6

Blast wave propagation is governed by the unsteady Euler equa-
tions, which were solved by a software developed in-house [13].
The numerical method on which this software’s solver is based
is a unstructured finite-volume cell-centered approach using the
traditional upwind scheme and a two-stage explicit time integra-
tion technique, yielding an accuracy of the second-order in both
space and time. In order to prevent numerical oscillations, which
may occur in regions with strong gradients, the Total Variation
Diminishing (TVD) minmod scheme was used [14]. The spatial
discretization was performed with an automatic Cartesian grid
generator [15]. In addition, the Courant–Friedrichs–Lewy (CFL)
condition has to be satisfied in order to guarantee the stability of
the time integration technique.

The propagation domain was split into approximately 5.8 mil-
lion cells. The region near the explosion was more refined than the
region farther from the explosion. On a computer with a 2.4 GHz
CPU and 16 GB of memory, the simulation was performed up to
100 ms after the detonation, which took about 180 h for all the
explosive charges tested. The values of the mesh wavenumber �,
which in the ideal case have to satisfy � > 100 [13], are summarized
in Table 2.

3. Results and discussion
Fig. 4. Variations of the blast wave arrival time for the different explosive charges.
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auges seem to be practically linear with respect to the arrival
ime. The nonlinear variations are confined to the region close to
he explosive charge. This linear behavior is more noticeable in
ig. 5(a) and (b) in which the propagating velocity, computed from
he distance, is represented versus the distance and the reduced
istance. Although some oscillations persist above the near-to-the-
xplosive-charge region, the velocity approaches an asymptotic
onstant value as the distance gets larger. The tendency toward the
symptotic value is more likely to happen closer to the explosive
harge, when the weight of the charge is smaller.

In Fig. 6, the distribution of the maximum overpressure peak is
epresented versus the reduced distance Z recorded by the succes-
ive gauges inside the tunnel for each explosive charge weight. A
patial discontinuity in the maximum overpressure peak occurred
or all tested explosive charges. As shown in Fig. 7, this disconti-
uity occurs at the same distance for the near-to-wall gauges, and
hus corresponds to the Mach reflection of the incident blast wave
n the tunnel walls. This Mach reflection is stronger and faster than
he incident wave that generates it [1,10].
Apart from the purely geometric reasons, it may be possible to
xplain why the discontinuity occurs at longer distance for smaller
uantities of explosives than for larger quantities as follows. As
hown in Fig. 5(a), the smaller explosive charges generate a more

ig. 5. Variations of the blast wave velocity for the different explosive charges: (a)
ersus the distance and (b) versus the reduced distance.
Fig. 6. Distribution of the maximum overpressure peak over the axial gauges for
the different explosive charges.

moderate blast wave velocity, and thus the Mach number is more
moderate. Consequently, according to Eq. (5), the Mach reflection,
which determines the overpressure jump, happens at a larger angle
˛M than for larger quantities of explosives. This larger angle ˛M

corresponds to a shift toward the upstream region of the Mach
reflection.

Between the explosive charge and the location of the discon-
tinuity, the maximum overpressure peak rapidly decreases with
the reduced distance, whereas the decrease is smaller behind that
discontinuity. In fact, in the region near the explosive charge, the
maximum overpressure peak practically follows the free-field law
in contrast with the region that is behind the discontinuity, where
the decrease diverges from the free-field law and tends toward the
constant law that characterizes the one-dimensional propagation
pattern. It is thus reasonable to conclude that the location of the
discontinuity determines the position of the transition zone where
the wave propagation is transformed from free to one-dimensional

behavior.

Fig. 8 shows the distribution of the Mach number at the mid-
dle of the tunnel’s cross-section, as the time varies from 1 to 50 ms
for the explosive charges mc = 0.300 kg and mc = 5.000 kg, respec-
tively. The fact that the Mach reflection wave travels faster than

Fig. 7. Distribution of the maximum peak overpressure peak over the off-set gauges
for the different explosive charges.
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Fig. 8. Distribution of the Mach number at differ

he incident wave is clearly distinguishable in these spanshots,
hich explains why the zone in which the three waves join together

rows along the tunnel wall. The straight Mach reflection defines
he region where the wave travels in a one-dimensional fashion.

Fig. 9 shows the variations of the discontinuity location ZTrans

ersus the parameter ˛. Clearly, the correlation between the dis-
ontinuity location and the relative diameter of the explosives
uggests a good fit with power-law. Using the traditional least
quare algorithm, the following fitting law can be deduced:

Trans = 0.0509(
˛/100

)13/9
. (8)

The fit has a correlation coefficient of 0.9436.
So in order to conveniently calculate the pressure level due to
n explosion in a tunnel-like geometry, the steps below may be
ollowed in succession:

determine the quantity and the material of the explosives and the
tunnel’s characteristic hydraulic diameter;
mes: (left) mc = 0.300 kg; (right) mc = 5.000 kg.

• deduce the value of ZTrans using Eq. (8);
• determine the reduced distance Z corresponding to the position

at which the pressure level has to be evaluated; and
• apply the free-field pressure law, i.e. Eq. (1), if Z < ZTrans, or the

one-dimensional law, i.e. Eq. (1) combined with Eq. (4), if Z >
ZTrans.

This method could be very useful for assessing with rela-
tive good accuracy the pressure undergone, and thus the damage
level provoked by an explosion inside a tunnel, provided that the
quantity and the material of the explosives and the tunnel’s char-
acteristic cross-sectional area are known.

4. An extension for non-centered blast charges
The formula (8) is valid only when the explosive is located at
mid-distance from the tunnel walls. When the explosive is near
the tunnel wall, as shown in Fig. 10(a), the transition zone may
vary from the case in which the explosive is centered. However,
this “near” configuration may be easily transposed to the cen-
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Fig. 9. Distribution of the reduced distance versus the relative size of the explosive
charge.

F
s

t
a
r
b

Fig. 12. Illustration of the tunnel configuration used in the INERIS experiments. The
symbol indicates the position of the explosive.

Fig. 13. Distribution of the measured maximum overpressure peak versus the
ig. 10. The explosion configurations: (a) full-sphere near the tunnel wall, (b) half-
phere near the tunnel wall, and (c) centered equivalent sphere.
ered configuration as explained below. In fact, if the tunnel walls
re assumed to be perfectly rigid, then the blast wave would be
eflected back with small energy loss. This may be seen as the
last wave generated by a half sphere detonated on the ground

Fig. 11. The explosion configurations: (a) near the tunnel corner, (b) e
reduced distance Z according to the INERIS and Henrych [4] experiments.

with the same weight of the original explosive charge, as shown in
Fig. 10(b). If the ground or solid walls dissipate some of the energy,
for instance, by cratering or in-structure shocks, a fairly correct rule
requiring the quantity of explosives to be multiplied by a factor of
ˇ = 1.8 may be used [1]. Since the wall, near which the explosive
is located, acts as a perfect reflecting surface, the blast wave would
propagate similarly to the case in which the explosive is located
at the axis of a new tunnel with a doubled height, as shown in
Fig. 10(c).
With these pure geometric considerations, Eq. (8) may still
be used provided that d is replaced by d′ = 3

√
ˇd and dH by

d′
H = 4/3dH . This is equivalent to applying a correction factor

xactly at the tunnel corner, and (c) centered equivalent sphere.
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Table 3
Comparison of the predicted transition distance of the ZTrans and experimental results for an NP91 explosion.

Trial number Configuration Experimental range Predicted value

1 150 g at ground level 15.50–19.05 18.48
2 300 g at ground level 12.01–15.22 13.25
3 600 g at ground level 7.19–10.56 9.47
4 300 g on the symmetry axis 8.96–12.00 11.60

Table 4
Comparison of the predicted and experimental values of the maximum overpressure peaks �pmax/p0 for Trial no. 2.

Z Experimental �pmax
p0

Predicted �pmax
p0

Error % Propagation pattern

6.03 0.3332 0.3140 −5.76 Free-field
0
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9.017 0.1878 0.170
15.22 0.1584 0.188
29.68 0.1189 0.138
45.28 0.1017 0.110

(4/3)/ 3
√

ˇ
)13/9

to Eq. (8). Since this factor is greater than 1, ˇ

eing at most equal to 2 [1], the reduced distance ZTrans for an
n-ground explosion would be larger than for an explosion in the
enter of the tunnel with the same quantity of explosives. Bearing
n mind that the overpressure level decays with respect to Z , this
lso implies that the overpressure in the one-dimensional propaga-
ion region is smaller in the farther regions if the explosive charge
s on the ground level than for the centered case.

An equivalent reasoning is valid if the explosive charge is located
t the right corner of the tunnel. In that case, it may be easily derived
hat Eq. (8) holds if d is replaced by d′ = 3

√
ˇ2d and dH by d′

H = 2dH ,

hown in Fig. 11. Hence, the correction factor is
(

2/ 3
√

ˇ2
)13/9

in

rder to take into account Eq. (8) for an on-the-corner explosion.

. Validation of the model

In this section, the transition model from free-field to one-
imensional propagation deduced from this parametric study is
alidated by comparing the present simulation results with exper-
mental data.

The available results are from a series of trials done by INERIS
French Institute of Industrial Environment and Risks). In a former

ining tunnel, an NP91 explosive charge – either suspended at
id-height or put on ground – was detonated. The geometry and

imensions of the tunnel are shown in Fig. 12, and the explosive
harge is located 29.50 m from the tunnel’s closed end.

In order to determine the TNT equivalent factor of NP91, four
eries of trials were performed in free-field configuration. The cor-
esponding weight of the tested charges, located on the ground,
as: 25 g, 50 g, 100 g and 215 g. The explosive was formed into a
emisphere and detonated remotely. In order to assess the repro-
ucibility of the data, the same series was repeated at least twice for
ach weight of the explosive charge. The uncertainty was found to
e less than 10%. The measured pressures ranged between 26 mbar
nd 1180 mbar. Based on the maximum pressure effect [16–18],
he TNT equivalence factor was found to be 1.18, where the fit has
correlation coefficient of 0.9089.

Fig. 13 shows the distribution of the maximum overpressure
eak recorded at the different gauge positions for trials involv-

ng three explosive charges (150 g, 300 g and 600 g) located on
he ground and another one (300 g) suspended at the tunnel’s

ymmetry axis. Table 3 provides the transition zone provided by
xperimental results compared to the present predictions apply-
ng Eq. (8). Clearly, the predictions match the experimental results
uite well. In addition, the ratio of the transition mean distance
or mc = 300 g along the tunnel symmetry axis to a charge of the
−9.47 Free-field
19.00 One-dimensional
16.14 One-dimensional

8.85 One-dimensional

same weight and quantity on the ground is about 1.12. This value

is quite close to the predicted coefficient
(

(4/3)/ 3
√

ˇ
)13/9

= 1.14

reported in Section 4.

6. An application

In order to illustrate its relevance, the damage estimation
method proposed in Section 3 was applied to Trial no. 2. Table 4
provides the maximum overpressure peaks recorded at different
gauge positions and the corresponding predicted values. In the tri-
als, the transition distance ZTrans could not be determined at a priori.
Therefore, the position of the transition distance can be determined
only within an interval of two successive gauges where the over-
pressure slope (in log–log scale) shows an abrupt change. Clearly,
the predictions fit reasonably well with experimental results, both
in the free-field and quasi-one-dimensional propagation regions.
Any discrepancies may be explained by measurement uncertainty
and by the fact that the one-dimensional propagation model pro-
posed does not take into account any viscous dissipation, which
actually is more significant in these propagation regions. Thus, the
results obtained suggest the suitability of the proposed damage
estimation method.

7. Conclusion

In this article, a parametric study was conducted in order to
determine the behavior of the blast wave in a tunnel due to the
explosion of condensed materials. In the region near the blast
source, the wave propagates essentially like a free-field wave. As
the wave interacts with the tunnel walls, the propagation pattern
changes into a driven wave, behaving like a quasi-one-dimensional
wave. For each likely propagation pattern, laws relating the
maximum overpressure experienced to the distance were given,
though the applicability limits of each of those laws were not
given.

Using an appropriate numerical test bench, the explosion of
different quantities of centered TNT charges inside a tunnel was
simulated. The ratio of the equivalent TNT explosive quantity to the
tunnel’s hydraulic diameter was taken as the parameter defining
the confinement of the explosion. The transition reduced distance
variations suggested a correlation law depending only upon this

confinement parameter. Using geometric considerations only, this
correlation law was generalized for an explosion source near the
tunnel wall and near a corner in the tunnel. The results given by
the correlation law were successfully compared to experimental
data for explosions inside tunnels.
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The proposed damage estimation method was also validated by
omparison with experimental measurements. This method could
e very useful for assessing with relative good confidence the pres-
ure undergone and the damage level provoked by an explosion,
rovided are known the quantity and the material of the explosive
nd the tunnel’s characteristic cross-sectional area.

Although the proposed law and method will already increase
he knowledge about the vulnerability to explosion risks in under-
round structures, the method presented here can be improved by
ntegrating the viscous dissipation essentially due to tunnel wall
riction, which can influence the blast wave amplitude and arrival
ime.
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